OS-9/68K SOFTWARE SUPPORT MANUAL

CC143 SCF Driver pack

VERSION 1.0 March 1991

Documentation history

date	version	change / description
91/03/07	1.0	first release

Copyright

Copyright (c) 1991 by COMPCONTROL INTERNATIONAL B.V.. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of COMPCONTROL INTERNATIONAL B.V., Fost Office Fox 921, 5600 AX EINDHOVEN-HOLLAND.

Disclaimer

The information in this document has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Componental Int B.V. makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Furthermore, Componental Int B.V. reserves the right to make changes to any product herein to improve reliability, function or design, without obligation of Componental Int B.V. to notify any person of such revision or changes. Componental Int B.V. does not assume any liability arising out of applications or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

OS-9/68XXX CC143 SCF SUPPORT

TABLE OF CONTENTS

			PAGE
CHAPTER	1	General Information	
1.1 1.2 1.3		Introduction General information Library Interface	1-1 1-1 1-1
CHAPTER	2	High level C Functions	
2.1 2.2 2.3 2.4		Introduction Video functions Keyboard functions Pointer functions	2-1 2-1 2-11 2-12
CHAPTER	4	Device Drivers	
4.5 4.6 4.7 4.8		scvid143 scptr143 sckbd143 sccc143	4-1 4-1 4-1 4-1
CHAPTER	5	Device Descriptors	
5.9		Descriptors	5-1

and including the contract of the contract of

enongémies poussi

9,293,12399

5 9

14

CHAPTER 1

General Information

1.1 Introduction

The CC143 SCF Driver support package is designed to give programmers a hardware independent interface to the CC143functions. The package consists of 4 drivers :

'scvid143' is the driver that controls the video part.

'scptr143' is the driver that controls the pointer(mouse) part.

'sckbd143' is the driver that controls the keyboard part.

'sccc143' is a standard SCF driver for the mouse port.

The drivers are implemented as a pseudo-SCF drivers. For the video and the pointer part, the standard Read and Write calls of the driver are not used, but every call is going through SetStat and Getstat calls. The package comes with a C-library which gives C programmers a comfortable interface to the drivers.

1.2 General information

1.3 Library Interface

An application which want to use the CC143 functions, first opens the device which has to be used . The devices are :

'/vid' for the video part.

'/ptr' for the pointer part.

'/kbd' for the keyboard part.

'/sm' for the SCF path on the mouse port.

As an example the video part this can be opened with the call : vidpath = open("/vid", S IREAD+S IWRITE);

The 'vidpath' which is returned has to be used in every call to the CC143 library.

CHAPTER 2

High level C Functions

2.1 Introduction

These functions are the video functions from the vidlib.1 library. this library has to be used in combination with the CC143 video driver.

2.2 Video functions

_vd_scrsiz() vd scrsiz() get screen size parameters

SYNOPSIS: int vd scrsiz(path, width, height, pages) int path; /* path number of video device */
int *width; /* pointer to width variable */
int *height; /* pointer to height variable */ int *pages; /* pointer to nr of pages variable */

DESCRIPTION: This function returns the size of the display in the variables pointed to by width and height. It also returns the maximum number of screen pages that can vd reqdmmem() request drawmap memory vd reqdmmem()

SYNOPSIS: unsigned char * vd reqdmmem(path, size)

int path; /* path number of video device */

int size;

DESCRIPTION: This function requests drawmap memory from the CC143

video memory. The size which is passed is the size of the drawmap in bytes. It must match the size of one screen. _vd_reqdmmem() returns a pointer to the

drawmap which can be used.

If an error occurs vd reqdmmem() returns -1 as its value and the appropriate error code in the global

variable errno.

CAVEATS: The size can be obtained using the vd scrsiz() call

_vd_retdmmem() return drawmap memory _vd_retdmmem()

SYNOPSIS: int vd retdmmem(path,drawmap)

int path; /* path number of video device */

unsigned char *drawmap;

DESCRIPTION: This function returns drawmap memory to the CC143

video memory. The memory must be requested first

with the vd regdmmem call.

If an error occurs _vd_retdmmem() returns -1 as its

value and the appropriate error code in the global

variable errno.

vd_actsn() activate screen _vd_actsn()

SYNOPSIS: int vd actsn(path,drawmap)

int path; /* path number of video device */

unsigned char *drawmap;

DESCRIPTION: This function activates the drawmap memory which is

passed, as being the current displayed screen.

_vd_snoff()

disable screen

_vd_snoff()

SYNOPSIS: int _vd_snoff(path)

int path; /* path number of video device */

DESCRIPTION: This function disables the screen.

vd getclut() Get a specific CLUT value vd getclut()

SYNOPSIS:

int _vd_getclut(path,clut)
int path; /* path number of video device */
int clut; /* CLUT register number */

DESCRIPTION: This function returns the value of the CLUT register

specified by in the following format:

0 red green blue bit31 bit0

int vd getcluts(path, stclut, numcluts, clutvals) SYNOPSIS:

> int path; /* path number of video device */ int stclut; /* start CLUT register number */
> int numcluts; /* number of CLUTS to read */
> char *clutvals; /* array to hold CLUT values */

DESCRIPTION: This function reads the specified number of CLUT

register values (numcluts) starting at stclut into the array pointed to by clutvals. The individual

CLUT values have the following format:

red green blue byte0 byte1 byte2

_vd_setclut() Set a single CLUT value _vd_setclut()

int vd setclut(path,clut,value) SYNOPSIS:

int path; /* path number of video device */

int clut; /* CLUT register number */ int value; /* CLUT color value to set */

DESCRIPTION: This function sets one CLUT register specified by

clut to the value given in value. clut is in the

following format:

0 red green blue bit31 bit0

vd setcluts() Set a range of CLUT values vd setcluts()

SYNOPSIS: int _vd_setcluts(path, stclut, numcluts, clutvals)

int path; /* path number of video device */
int stclut; /* start CLUT register number */
int numcluts; /* number of CLUTS to be set */

char *clutvals; /* pointer to buffer of CLUT color

values */

DESCRIPTION: This function sets numcluts CLUT values to the CLUT

registers of the hardware. CLUT values will be set starting at the stclut register. The data will be copied from the buffer pointed to by clutvals. The individual color values have the following format:

> red green blue byte0 byte1 byte2

2.3 Keyboard functions

kb ssig()Send signal when a new key value is available kb ssig()

SYNOPSIS:

int _kb_ssig(kbdpath, sigcode)

int kbdpath; short sigcode;

DESCRIPTION: This function sets up a signal to be sent to the calling process when a new key value is available. As soon as a new value is available, the signal 'sigcode' is sent to the calling process.

> kb ssig() must be called each time the signal is sent if it is to be used again.

kb_rel() Release signal to be sent kb_rel()

SYNOPSIS: int _kb_rel(kbdpath)

int kbdpath;

DESCRIPTION: This function cancels the signal to be sent to the

calling process when a new key becomes available.

The function kb ssig() enables this function.

If an error occurs _kb_rel() returns -1 as its value and the appropriate error code in the global

variable errno.

CAVEATS: The signal request is also cancelled when the

issuing process dies or closes the path to the

device.

2.4 Pointer functions

_pt_ssig()Send signal when a new key value is available_pt_ssig()

SYNOPSIS: int _pt_ssig(ptdpath, sigcode)

int ptdpath;
short sigcode;

DESCRIPTION: This function sets up a signal to be sent to the

calling process when a new key value is available. As soon as a new value is available, the signal

'sigcode' is sent to the calling process.

_pt_ssig() must be called each time the signal is

sent if it is to be used again.

If an error occurs _pt_ssig() returns -1 as its value and the appropriate error code in the global

variable errno.

pt rel() Release signal to be sent pt_rel()

int _pt_rel(ptdpath)
int ptdpath; SYNOPSIS:

DESCRIPTION: This function cancels the signal to be sent to the

calling process when a new key becomes available.

The function _pt_ssig() enables this function.

If an error occurs _pt_rel() returns -1 as its value and the appropriate error code in the global

variable errno.

CAVEATS: The signal request is also cancelled when the

issuing process dies or closes the path to the

device.

can ye so let lemma sub-like

sea a da sed

re, pater doring

826733033300 S.C. 400

CHAPTER 4

Device Drivers

4.5 scvid143

___

This is the video driver for the CC143. It has functions to initialize the hardware, write and read the CLUT table, and extract memory.

All these functions are implemented using OS-9 GetStat and SetStat calls. These functions can be called using the C-interface which is described in chapter 3. The Read and Write entries are empty entries, and should not be used,

4.6 scptr143

This is the pointer(mouse) driver for the CC143. It has functions to initialize the hardware, and to read the mouse position. The driver assumes that a logitech (or compatible) mouse is connected to the mouse port of the CC143

The functions are implemented using OS-9 GetStat and SetStat calls. These functions can be called using the C-interface which is described in chapter 3. The Read and Write entries are empty entries, and should not be used,

4.7 sckbd143

This is the keyboard driver for the CC143. It has functions to initialize the hardware, and to read key kodes. The driver assumes that a IBM/PS2 or compatible keyboard is connected to the keyboard port of the CC143

The functions are implemented using OS-9 GetStat and SetStat calls. These functions can be called using the C-interface which is described in chapter 3. The Read and Write entries are empty entries, and should not be used,

4.8 sccc143

This is a standard SCF driver for the mouse port of the CC143. If another device than a mouse is connected, e.g. a terminal, this driver can be used in combination with the 'sm' device descriptor.

a regionality

.....

Exchange 7.

I de niveri - en Usari Sanjara

N 72

CHAPTER 5

Device Descriptors

5.9 Descriptors

The Device	Descriptors of R***x*** *M	the video part are called:
		K-Tal frequency of CC143. 5 or 8 MHz.
		Vertical resolution
		Horizontal resolution
		CPU-module type
descriptor 1024 by 768 The correct	for a CC112 and 8 for a CC143 wi ct 'vid' descrip proper operati	1024x768_5M is the video d a screen resolution of ith a 5MHz X-tal. otors has to be loaded into ion. The device name is
The Device ptr_***	Descriptors of	the ptr part are called:
		CPU-module type
Example : CC112.	ptr_cc112 is	the ptr descriptor for
The Device kbd_***	Descriptors of	the kbd part are called:
_		CPU-module type
Example : }	kbd cc112 is t	he kbd descriptor for

The source of the desciptors can be found in the 'DESCRIPTORS' directory of your distribution disk. The various resolutions are described in the 'resolutions.d' file. The CPU dependant values are described in the files systype_*.d, where * is the CPU type. If new descriptors have to be added, create a new systype_*.d , and change the makefile. The objects of the device descriptors can be found in the 'OBJS' directory of your distribution disk.

CC112.